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A NEW CLASS OF ISOQUINOLINE ALKALOIDS: THE PROAPORPHINE~TRYPTAMINE DIMERS
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Abstract: The previously isoclated Roemeria hybrida (Papaveraceae) alkaloids
(-)-roehybridine and (-)-roemeridine are the first proaporphine-tryptamine
dimers, and possess structures 1 and 2, respectively.

Roemeria hybrida (L.) DC. (Papaveraceae) was first investigated by a Russian team in the

1950's, as a consequence of which the alkaloid (-)-roemeridine, C31H39N305, m.p. 236-237° ¢
(MeCH), was isolated but its structure not determined.2 Work on R. hybrida was resumed in the
1970's in Czechoslovakia when {~)-roemeridine was reisolated, and the isomeric (-)-roehybridine,
m.p. 210-211° ¢ (MeOCH) was alsq obtained.3 Spectral data were duly reported, but the structures
still remained unknown. (-)-Roemeridine is readily soluble in MeOH and less so in CHClB, where-
as (-)-roehybridine is poorly soluble in MeOH and easily soluble in CHC13.

We have now reisclated these alkaloids from R. hybrida of Turkish origin, and have deter-
mined that (-)-roehybridine is represented by structure 1 and (-)-roemeridine by 2.

Our previous studies on R. hybrida had established this annual as a rich source of proapor-
phines.4 Since both (-)-roemeridine and ({-)-roehybridine possess three nitreogen atoms, it was
logical to assume that we were dealing with proaporphine-tryptamine dimers, with the proaporphine
accounting for one of the nitrogens and the tryptamine moiety for the remaining two. Signifi-
cantly, the mass spectrum of (-)-roehybridine (1) displayed molecular ion m/z 533 and base peak
m/z 244, c14H16N202’ due to the B-carboline type ion 3.

The 360 MHz lH spectrum of (-)-roehybridine in CDCl3 has been summarized around expression
1. Most prominent are the three aromatic singlets at § 6.97, 6.93 and 6.52 assigned to H-5',
H-2' and H-3, respectively; and the five methyl singlets at § 3.94, 3.93, 3.85, 3.38 and 2.46,
corresponding to the 4'-OMe, 3'-OMe, 2-OMe, 9-OMe and 6-NMe, respectively. A broad exchangeable
proton appears at ¢ 8.48 and can be assigned to 1'-NH.

Among the aliphatic protons, the equatorial H-9 (8 3.43) appears furthest downfield and was
shown to be geminal tc the axial 9-OMe by mutual NOE's. The H-6a signal is at &§ 3.35 and over-

laps with that for H-7a. The clear doublet of doublets at § 1.54 for H-7B indicates a trans
relationship to H-6a (Jea,7s = 10.3 Hz), and a gem relationship to H-7a (J7a,76 = 10.8 Hz).
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The seven aliphatic protons of ring D can be divided into two spip systems. Long range W
couplings between H-9eq (8§ 3.45) and H-lleq (§ 1.70), as well as between H-8eqg (8§ 2.04) and
H-12eq (8§ 1.40) established that ring D is in a chair conformation and that the hydrogens in
question are equatorial. It follows that the 9-OMe group (8 3.38) is axial.

A 4% NOE of the H-8eq signal (8§ 2.04) was observed upon irradiation of H-7a (§ 3.35).
Similarly, the H-1l2Zeg signal (& 1.40) was enhanced when H-78 (8 1.54) was saturated. In turn,
irradiation of the H-8eg (8§ 2.04) signal effected an enhancement of the 9-OMe (& 3.38). This
is another indication that the aliphatic methoxyl on ring D is at C-9 and is axially oriented
as shown in expression 1.

The stereochemistry at the C-10 spiro center was defined through further NMR NOE measure-
ments . Irradiation of either the H-llax {(§ 2.23) or the 9-OMe (& 3.38) signals led to enhan-
cements of the broad 1'~NH signal (§ 8.48).

A l3C NMR spectrum was obtained which confirmed the novel carbon skeleton of (-)-roehy-
bridine. Of particular interest was the quaternary spiro C-10 rescnance which was at & 54.3,
while that for the spiro C-12a appeared at § 45.3. One-bond carbon-proton couplings were
observed using an XH correlated two-dimensional sequence. Quaternary carbons were identified
through two and three-bond couplings analyzed by a COLOC experiment.5

Turning now to (-)-roemeridine (2), it was clear that the mass spectral, UV and IR data
were close to those for (-)-roehybridine (l). The telling differences were in the aliphatic

region of the NMR spectra. lH NMR spectra (500 MHz) were obtained in CDCl., as well as in

3

CD,OD. The results in CDCl3 are given around expression 2, and in CD,0D around 2A.

3 3

In CDBOD, the aromatic singlets at § 7.23, 6.93 and 6.63 were assigned to H-2', H-5' and
H-3, respectively. The resonances for the 3'-OMe, 2-OMe, 4'-OMe, 11-OMe and 6-NMe groups
were found at & 3.88, 3.88, 3.84, 3.25 and 2.35, in that order. The 1'-NH could not be
observed but was evident as a broad singlet at § 8.66 in CDC13.

The assignments of the protons for ring D in (-)-roemeridine (2) proved more challenging
than for 1 due to slight motion within that ring, with a resulting broadening of the resonan-
ces. In particular, the ring D methoxyl singlet changed from a narrow resonance 1in the case
of (-)-roehybridine (l) to a short broad peak at § 3.25 (CD3OD) in (~)-roemeridine (2a),
while it was not possible to observe small, long range, W couplings. However, the couplings

for H-11 (8§ 3.66) in CD,OD showed this hydrogen to be equatorial, with J values of 5.8 Hz with

3
respect to H-12ax (8§ 2.07) and 3.2 Hz with respect to H-1l2eq (§ 2.01).

NMR NOE measurements for 2 were run in CDCl3 as well as in CD30D, and the results proved
complementary. In CDClj3, irradiation of 1'-NH (8§ 8.66) induced enhancement of 11-OMe (& 3.19).
In CD30D, the corresponding 11-OMe signal, now at § 3.25, was enhanced by irradiation of H-78
(6§ 1.54). Also, the NOE between H-11 and H-1l2eq was almost identical to that between H-11
and H-l2ax, indicating the axial dispositiocn of the 11-OMe group.

The 13C NMR spectrum of (-)-roemeridine in CD3OD showed close agreement with that for (-)-
roehybridine; and again XH correlated and COLOC experiments were employed.

The presence in R. hybrida of diastereomeric proaporphines such as (-)-roemerialinone and

(-)-isoroemerialinone has already been demonstrated.4 It appears, therefore, as if this
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plant can also produce a diastereomeric pair of ketonic reduced proaporphines, 4 and 5, which
can underge in vivo Pictet-Spengler condensation with a tryptamine analog to afford alkaloids
1l and 2. 1In support of this thesis is the fact that simple tricyclic alkaloids derived from
tryptamine via Pictet-Spengler condensation are known to occur among the Papaveraceae.6

The absolute configuration at C-6a for proaporphines from R. hybrida is known to be 5.4
It follows that (-)-roehybridine (1) and (-)-roemeridine (2) must also incorporate that stereo-

chemistry.
EXPERIMENTAL

R. hybrida (10 kg) was collected near Usak. The powdered plant was extracted with cold
EtOH. Acid-base separation provided 50 g of crude alkaloids. This was fractionated first on a
silica gel column, and then by TLC on silica gel to afford 1 (1g) and 2 (2 g).

(=) -Roehybridine (1): [alp -16° (c 0.056, MeOH). Principal NOE's in CDCl3
10%, H-2' to 1'-NH 9%, 3'~-OMe to H-2' 26%, 4'-OMe to H-5' 25%, H-5' to 4'-OMe 30%, H-5' to H-6'

1'-NH to H-2'

5%, H~-6' to H-5' 10%, H-9 to H-8eg 4%, H-9 to H-Bax 5%, H-8eq to 9-OMe 6%, H-llax to 1'-NH 2%,
9-OMe to 1'-NH 2%, H-7a to H-8eq 4%, H-7B to H-1l2eq 3%, H-4 to H-3 7%, 2-OMe to H~3 24%, H-3 to
2-OMe 11%.

(=)-Roemeridine (2): [alp -21° (c 0.075, MeOH). Principal NOE's in CDCl, 1'-NH to H-2' 7%,
H-2' to 3'~OMe 32%, 3'-OMe to H-2' 26%, 4'-OMe to H-5' 26%, H-5' to 4'-OMe 34%, H-6' to H~S5' 5%,
H-6a to H-7a 4%, H-7a to H-6a 3%, H-6a to 6-NMe 4%, 6-NMe to H-6a 7%, H-4 to H-3 5%, H-3 to 2-OMe
22%, 2-OMe to H-3 26%, 1'-NH to 11-OMe 2%; NOE's in CD30D H-2' to 3'-OMe 13%, 3'-OMe to H-2' 23%,
H-5' to 4'-OMe 12%, 4'-OMe to H-5' 18%, H-6' to H-5' 3%, H-1l to 11-OMe 3%, l1-OMe to H-11l 13%,
H-11 to H-12ax 3%, H-11 to H-12eq 3%, H~11l to H-7' 3%, H-%9ax to H-8eq 4%, H-78 to 11-OMe 5%,
6-NMe to H-7B 5%, 6-NMe to H-6a 9%, 6-NMe to H-5 8%, H-6a to 6-NMe 3%, H-5 to 6-NMe 3%, H~4 to
H-3 2%, H-3 to 2-OMe 12%, 2-OMe to H-3 14%.
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